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SUMMARY

An algorithm for the REML estimation of (co) variance components in
general multivariate mixed linear models is described. The algorithm is
based on the use of Average Information (AI) as second differentials of
the likelihood function. The Al is obtained by averaging the information
matrices based on observed and expected information. It is manipulated
to a form that is much easier to calculate than either of the two. This
involves the setting up of dummy variables as functions of residuals and
calculating sums of squares and cross-products associated with these.
Procedures that are based on second differentials can lead to estimates
outside the parameter space. By contrast, the EM-algorithm always ensures
that estimates are’ in the parameter space. An altemative formulation of
the EM-algorithm allows the possibility of constructing algorithms that ar¢
intermediate between Al and EM and can ensure estimates within the
parameter space without the problem of slow convergence of the EM
algorithm.

The new algorithm was compared to derivative-free (DF) and EM
algorithms by analysing two sets of field data under several models. The
Al algorithm converged in much fewer rounds than the other algorithms

. and was in general able to locate a higher maximum of the likelihood
function.

Key words :‘ Multivariate mixed linear models, Residual maximum
likelihood, Estimation by EM algorithm.

1. Introduction

Variance and co-variance componeﬁts are of paramount importance in
animal breeding as well as in many other areas of research (Searle er al. [28]).
In many cases data are multivariate such that covariances among traits also
must be considered. The most common method currently used for the estimation
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of variance and covariance components in animal breeding research is the
REML method suggested for unbalanced data by Patterson and Thompson [25].
The REML method is computationally very intensive especially in large
multivariate models: with several.random effects. Much efforts has, therefore,
gone into the search for efficient algorithms and computational procedures.
Procedures currently used for the estimation of (co). variance components are
usually based on either derivative-free (DF) methods, as suggested by Smith
and Graser [30) and Graser ef al. [5] or they are using first derivatives as
in the EM-algorithm (Dempster ef al. [1]).

Algorithms and computer packages implementing DF methods for
multivariate models used in animal breeding have been presented by Meyer [19]
and Jensen and Madsen [11]. Derivative-free REML algorithms are, however,
plagued by numerical problems, especially if the likelihood function contains
many parameters to be estimated (Misztal [21]). Misztal also showed that as
the number of traits increases the DF methods become less efficient than
methods using first derivatives, i.e. procedures based on the EM-algorithm. The
major part of the computations in one round of a DF method involves computing
the determinant of the coefficient matrix of the mixed model equations. In the
EM-algorithm, elements in the sparse inverse of this matrix are needed.
However, Misztal and Perez-Enciso [22] have shown that these elements can
be computed in about three times the computer time needed to compute the
determinant of the coefficient matrix. Since the EM-algorithm may need fewer
rounds, the total computing time might well be less than the time needed in
algorithms based on DF methods.

The computations involved in estimating (co) variance components by the
REML method can often be immense, especially if the model contains many
traits that are influenced by several random factors. In special cases it is possible
to use transformations that simplify the analysis of multivariate models
considerably, e.g. Meyer [18], Jensen and Mao [10], Lin and Smith [14], Juga
and Thompson {13} and Van Vieck and Boldman [31]. Unfortunately all these

algorithms are highly specialized and cannot be used in general multivariate
linear models.

The earlier mentioned poor numerical properties of the DF methods in
multivariate mixed models have spurred new interest in the development of
algorithms utilizing first and may be second derivatives of the likelihood
function. The matrix of second derivatives of the likelihood function is called
the observed information matrix. By taking expectations, one obtains the Fisher
- information matrix, sometimes just called the information matrix. REML
algorithms utilizing observed or expected information will lead to either the

~
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Newton-Raphson or the Fisher-scoring algorithms, respectively (e.g. Searle
el al. [28]). Both the observed and the expected information matrices involve
terms that are difficult to compute. Using univariate models, Johnson and
Thompson [12] noted that thé average of observed and expected information
is considerably easier to compute than either of the components. This leads
to an algorithm somewhat between the Newton-Raphson and the Fisher scoring
algorithms.

The purpose of this paper is to extend the method of Johnson and
Thompson [12] to a general multiple trait model with several random effects
and allowing different models for each trait. Another purpose is to use an
alternative formulation of the EM-algorithm for restricted maximum likelihood
to derive algorithms that are intermediate between EM and Al algorithms and
can be used to enable parameter estimates to stay in the parameter space.

2. Model
In this section the general multivariate linear mixed model is defined.

Let :

r

y=XB+)Y Zu+e (1)
i=1 . !

be the Multivariate mixed model, where y denote the vector of observations

on t traits, B is a vector of fixed effects, v, i=1,2, ..., r are vectors of random

effects for the i random factor and e is a vector of random residuals. The
design matrices X and Z, i=1,2,...,r are assumed known. Without loss of

generality it is assumed that X has full column rank.

The design matrices X and Z, are structured. Consider the situation v_vheie

records are ordered by trait and the i’th random effect affects each trait only
once; i.e., p,=t, where p, is the number of traits included in the i’th random

effect.

Then Z; = | :




-corresponding to a partition of w, as w’;, = (v : W, Leeeruly
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], where

subvectors u, are the effects of the i’th random effect on the j’th trait.

ij

For the random vectors in (1) we further assume :

E[y]=0

Ele]l =0
Var[u;] = G;

Var[e] = R (3)

Cov [u, u’j] =0, if i #jand

Cov(u,e] =0, vi

Let G=E+Gi
i=1
Z2=(2:72,:..:17,]
and
= ()t ]

then Varly] = V = ZGZ'+ R. Generally, the (co)variance matrices are
structured such that G, = G, ® A,, where A, is a known matrix and G, is
a p, X p, matrix of variances and covariances among the traits in the i’th random
effect. In many cases A, is taken to be the identity matrix, or if u, represents
additive genetic effects then A, is taken to be the numerator relationship matrix
among the animals represented in u,. The dimension of GO‘ depends on the
number of traits that are affected by the i’th random effect and on whether

several correlated random effects affect the same trait as for example in models
with direct and maternal additive genetic effects.

The residual (co)variance matrix R, is a block diagonal matrix (for the
moment assuming traits ordered within subject). The diagonal block ]
corresponding to the i’th subject depends on which traits are measured. If all "
traits are measured the block is Ry, a t Xt matrix of residual (co)variances. If
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some traits are missing, the corresponding rows and columns in R must be
deleted in order to form the diagonal block.-
The parameters to be estimated are the N unique elements of the symmetric

matrices G"i’ i=1,2,...,r,andR,.

The collection of parameters are therefore :

0= [vech’ (Gol)’.; vech (Goz)' :...:vech (Gor)' :vech(Rg) 1" (4
where vech is the operator putting unique elements of the argument in vector
form (Searle 122).

Individual elements in O will generally be referred to as ej, for the j’th

element or as e.g. 0., for a specific element corresponding to the j’k’th
iiX) pe

element in G,, and O, for the j’k’th element in R..
0, RGKY 0

The mixed model equations corresponding to (1) are (Henderson [7]) :
A . . . .
XR'X XR'Z Bl_| X R'y )
ZR'X ZR'Z+GU| ] Z Ry

" Some useful relationship related to (5), disqlissed by v'Harvillé [6] and Searle
[26] are given below :
P=Vv'-vixxv'x'xvh !

which is a projection matrix mapping observations into weig.hted r'esidtials :
Py=V'G-XP=R'G-XB-ZD) 0

Similarly the following quantities are used to simplify derivation :
ZPy=G'u | , ®)
ZPZ=G"'-¢'cwG! 9

where C is the coefficient matrix in (5) and C"™ is the submatrix of C™'
corresponding to u.

Finally :

A -
yIPy — yfR—ly _ B/x/R-ly_G/Z/R—ly
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3. Likelihood

Assuming multivariate normality the restricted log-likelihood, modified
from Harville [6], can be written as :

L®) =-2n() = const+in IVI+in X' VX | +y Py (11)

Again following Harville, the first and second derivatives of (11) with
respect to 6 can be written as :

L (9) v S Tav |

e T W [aep} yp[ae}” | (12)
FLEO __ [av,av p2Vp 2V

26,06/ ~ tr[aejpaej' PJ+2ypa a0; Y 13

4. . Computation of First Derivatives

In order to compute the first dcﬁvaﬁves of the log-likelihood, the teﬁns -
in (12) must be evaluated. Consider initially the derivatives with respect to
a (co)variance parameter in the i’th raudom effect.

Recall that G, = G, ® A,
i

~ Rewrite GOi as: Goi = Z_‘Di G4, k) 9i_ Gk} (14)
jzk

where D. G is a symmetric p, xp, indicator matrix containing ones in positions
correspoudmg to the i, _]lh parameter in G0 and zero’s elsewhere, and
N i G,
=D

86 G and

9; 6.6 is the, corresponding elgment in 8. Thus o

accordingly when diffefentiating the likelihood in (12) :

V. __ 3

Y 2,G,Z, + R
1=1

d ' :
=5 Z,GZ
36, ..y 1140 :

d L,
36, (1y [[ZDI{lm}en(lm)] ®Ai]zi

I>m
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a \ ’
96; G, k) Z; (D49 8 G,0) @ A Z

Further define :
A L . .. .
Up= [0 305 G,N] Gy : (15)

A
and let Gw.u. be the j’th column in U,, the set of weighted solutions corresponding
to the i’th set of random effects.

For the trace part in (12) we obtain :

v .

= tr [Z’i P Zi (Dl{j,k) ® Ai)]

tr [(G]' - G;' C%G") (Dyg 1y ® A

tr [((G  ®AT")

- (G5! @A) C (GG @ AT )) Dy ;g ® A

=tr‘[D|(j,k)®:Ai)(G(',"Q‘A[’) o
_(Dm’k}@A,)((;BI'@Ai-I)C_l_,iui‘ (G6,'®A,‘1)]'

=tr[Dyg G5.l ® Iy ]

—tr [(Dyg19 Gy, ® 1) C™(Gy' @ AT D]

Gi tr [D; 5,19 G(_).l]_"[(G(_),l D; g, k) G(_)‘1 ® A7) CUi%)
(16)
Similarly for the quadratic in (12), utilizing (8) :

Vv
yP P
[aeio‘,k)] Y

tr(y P[Z,(D; g,y ®ADZ;]1Py]

tr {2767 (Dyg 1y @A) Gi ' ;]

tr [0 (Gp' ® A7) (D 49 ® AD (Gg' ® A7) ;]
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tr [7(Gg' Dy 19 ®1g) (G ® A1)y

tr[95(Gy' Dy, 9 Gg' ® A7) a7

Now consider all first derivatives with respect to G, simultaneously. This
i

dL () JL (8)
3G, aG,
‘ t 0.0
off-diagonal"ele}nents % 3%0(9-)-
i)
By inspection of (16) and (17) it can be seen that the first differentials
can be written in terms of cross products of solutions for individual traits and
pertinent parts of the inverse of the coefficient matrix in (5).

can be written as a matrix with diagonal elements

Thus : »
JL (8) - - _
3G, U Gy, ~ Gy, [Ti+8;1Go/
for - tl G k) = tr [ Ai_ 1 C;’iu) u(k) ] al]d

- A, -1 A
Si g,k = Wigy A Ui

(18)
where Gi is the solution vector for the j’th trait in the i’th random factor. In
(0}
- understanding (18) it is useful to note that
1 .l A -1 'A
Go SiGo =Uj A U
A
where U, is defined in (15).

In evaluating first derivatives with respect to residual (co)variances we
need to compute

JL(8) - ,
B "x (iv”
where Rij is an indicator matrix defined in :
R = Y Ry 6 ) : (20)
j2k .
Similar to-the definition of D, Gy Ve obtain 50 = Rjk.

R, k)
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By expanding P in terms of the coefficient matrix C we obtain for the
trace part of (19) :

tr[RUP]=tr[R,jR"]—lr[C"‘W’R'lR“R"W] @1

where W = [X : Z]
Similarly for the second term in (19) using (7) :
y PR Py = R'RyR'E )
A A A : )
wheree = y-Xp-Zu
Note that. W RT'R/R.'W has exactly the same structure as

‘W’ R™' W, but with R™ " replaced by R™' R, R™". Therefore, if a sparse inverse

of C is available (21) and (22) can be computed in one pass through the data.
A sufficient sparse inverse is one where the elements corresponding to non-zeros
in the original matrix only are computed.

’

5. Computation of Second Derivatives

The matrix obtained by evaluating expression (13) for all'j and j is the
observed information matrix. Taking expectations one obtains the Fisher
information matrix, with typical element :

L@ ]| . [av, a3V '
LA\ ZIp —
Eb%a%' | 36 ¥ 30, @

Computation of either (13) or (23) might in many practical applications
be prohibitively tedious. However, asymptotically they are identical, and this
suggests taking the average of (13) and (23) as an expression of information
(Johnson and Thompson [12]).

We therefore, defihe an average information matrix I, (6) with typical
element : e

2
1, 0 = %[_aw . E[MD: yp2Ypdy
J J

26,00, T | 96;26; a0 ag Ty *

To simplify (24) define a matrix F whose j’th colunin fJ consists of the

vector g—;’— Py. The number of columns in F thus equals the number of elements
j

in 0 to be estimated.

4
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-Then, I, (8) = F'PF

FR'F-T"WR'F (25)
using (10) and where TAis a matrix whose j’th column is the solution to (5)
with f, used in place of y, ie. T = C"' WR!F,

Therefore, once F is known the average information can be computed
easily by solving systems like (5) once for each parameter in 8 using efficient
techniques for solving large and sparse linear systems, such that the solutions
can be found without computing the full inverse of C.

Computational efﬁcjency in obtaining (25) depends on how easy it is to
form F. The following shows how to compute fJ corresponding to elemnents

in G, and R,
| v
f(Oi )= ——— Py
oo [aei (Lk)]
= Z (D4 ® ADZ, Py (26)
Now utilizing (8) we can write (26) as :
F®igky = Z [ Dy 13 ® A 1Gy ' uy
= Z[(Dgy®A) (Gy' ® A7) i
= Z[(Dyg Gy ® 113, 27

~ The ‘vectors in (27) are now very easy to compute using the weighted
solutions -of the MME given in (15).

£8;, k) = Z Uy + Zjy ij ' (28)
where Z,] were defined in (2), and qu are the weighted solutions defined in
(15).

If j=k the (indicator matrix D, Gy contains only a one on the j’th diag'onal
all other elements being zero, so (28) simplifies to :

F®; 50 = Zij by | 29




ESTIMATION OF (Co) VARIANCE COMPONENTS . : 225

For the evaluation of columns in- F comresponding to. parameters in

R, we need : _
. v 1
f6r 1) = [aekg k)] i

= {;a—(ZGZ' +R):| P

' BORU’U ]
s X
= Rl GRI } Py
(B
= Ry Py R G0

where-RJk‘ was defined in (20).
Using (7); t30) can be written a§ :
f@r 1) = RycR “(y- xS Zu) 31)
The expressnon above is again easy to compute. If J k the elements in

f (6, G k)) are the weighted residuals for the j’th trait with all other elements

zero. If j#k, the weighted residuals for. both traits are used, with all other
positions equal to zero. The effect of R is to interchange the weighted residuals

for each trait. For computational efﬁaency (31). should be computed in - the
same pass through data as while collecting (18) for the first derivatives.

Furthermore, since fJ is not needed explicitly bbut only in s'ettingvlip, systems
like (5) with f; in place of y the corresponding right hand sides can be computed
directly without actually forming fj

6. Update of (Co) Variance Paramelers

oL (8)
20
new estimate of the variance components can be found using the Newton update

A from :

When I, and have been computed with an estimate 6 of 6, a

-1 9L (8)
06

A = lA (32)
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The estimate of 6 to be used in the next iteration is 6n +1 = 9,—A. The
procedure must be iterated until II A Il <& where € is a small positive number.
At the convergence l;‘ will contain asymptotic estimates of Var [@].

A problem with the Newton update is that the parameters are not
* guaranteed to stay within the parameter space. Therefore, after each update
it must be checked that all (co)variance matrices estimated
G°- , 1=1,2...rand R are positive (semi)definite. If the Newton update leads

to 8 outside parameter space, Johnson and Thompson [12] suggested to modify
(32) using the method of Marquardt [17). This method amounts to adding a
constant to the diagonal elements of the information matrix before solving (32).
Another, perhaps simpler, approach is to switch to the EM. algorithm of
Dempster ef al. [1]. This can be done either on all or on some of the parameters
to be estimated. It is also possible to combine the Al and the EM algorithm.

7. Estimation by EM Algorithm
A typical EM estimate (see e.g. Mintysaari and Van Vleck [23]) for a
parameter in the i’th random effect in G is calculated as :

A - 1 A -1y A - W, U
Goig) ="h -850 (v (Dy g, 1y A7) i+ tr (D 5 4y Ay 1 CYigy @)] (33)

where Sﬁ( = 1 if j=k and zero otherwise.

Therefore the update to estimate Gol can be written as :
& = [a,Go ~ (T, +5)1/q (34
This update can be computed from the first differentials in (18) by pre-
and post-multiplying by the comsmnding G". and dividing the product by g,
the number of levels in the i’th random factor.
In a notation similar to (32) the update to estimate G, can be written

i
as :

A = Tgm vech[%] | (35)
0I
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Consideration of the multiplications involved informing A, show that the

elements of 12} corresponding to 6. . and 6, are :
EM poncing 1 5 sy

£ G, . Gy 14 (36)

[ Go igs)y  ifkr)

G
05y O gs)
for _]k dxfferent from rs. Note also that Bmk} = Goj )

Thxs inverse information matrix gwes the (co)variance matrix of G, if
i

me q, random effects were directly observed. The elements of IEM are functions

of the elements Gi & ‘of G and it can be verified that they are :

q; [ 0‘ Go +G;-,i;js Go,,, 1/(1+ 8x ) - (37

The EM updates for R, can be derived in similar way but it is necessary

to take the possible different mlssmg data pattems into account (Mantysaari,
Jensen and Thompson, uupubllshed) For example the update to form R from

R, is R, g ll{ R,, which is in the same form as the update to form G from
G, in (34). Therefore in vector form Ap can be wntten as :
_ daL®) ) -
Ag = 15\ h| S5 9
R EMR YeC [ IR, ] , (39
The matrices IEMR and I, are given by use of (36) and (37) with R,
replacing G By combining the updates for all sets of (co)variance parameters

we obtain:

Igm = (2 lEMJ ® lgvr (40)

The advantage of the altemative formulation of the EM-REML algonthm is
that it allows the combination of Al and EM information. If the Al algorithm in a
certain round yields parameters outside parameter space-a switch to the
EM-algorithm will yield estimates inside the parameter space with increased
likelihood. Unfortunately the increase in likelihood can be very small and a better
alternative might be to use a combined information matrix :

Iygm = (1 —bgy) Ta+bemIem (41)

where by, e [0, 1] and'must be chosen such that estimates are within parameter

space.
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8. Summary of Computational Steps
The tollowing summarizes the necessary steps in the proposed algorithm:

1. Form the structure of the multiple trait mixed model equations in sparse
form, e.g. as in Duff e al. [2].

2. To facilitate effective factorization and to minimize fill in, reorder the
MT-MME using a minimum degree algorithm or such e.g. George and
Liu [3] and carry out symbolic factorization of the .coefficient matrix.

3. Given the current value of 6, form the numerical part of MT-MME by
one pass through the data, carry out numerical factorization, solve the
system, and compute the sparse inverse of the coefficient matrix.

4. In one pass through the data, compute residuals, first derivatives of
L(6) and form W' R™'f,(8) for i=1,2, .., N.

5. Solve MT-MME one time for each parameter in 6 using WR™'f, (9)
formed in step 4 as right hand sides, and compute I,.

Update (co)variance components using (32).

7. Check that the new parameters are within parameter space.
If yes check for the convergence. If no, discard Al update and compute
a combined update with a sufficient weight on EM to ensure that
estimates stay within parameter space. :

Steps 3-7 must be repeated until convergence. Each iteration requires two
passes through the data, computation of the sparse inverse of the coefficient
matrix and solving the mixed model equations 1+N times. Efficient use of sparse
matrix technology, e.g. as in FSPAK (Misztal and Perez-Enciso [22]) is therefore
of crucial- importance for large models. :

9. Examples

The new algorithm was tested on two different sets of field data. The
first data set consisted of records from the Danish beef-performance test stations
for dual purpose cattle. A total of 5489 Holstein bulls had records on the traits
weight at 1.5, 6 and 11 months of age. Tracing pedigree information increased
the total number of animals in the analysis to 15241. The model for each trait
included fixed effects of station-year-season and effects of age, proportion of
Holstein-Friesian genes and heterotsygosity as covariables. The only random
effects in the model were animal and error.

The second data set consisted of records of weights of Texel sheep at
birth and at 2 months of age. A total of 7863 animals had records, and after
tracing pedigree information the data set contained a total of 9460 animals.
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For each trait the model included 5 cross classified fixed effects with a total
of 421 levels, and as random effects the model included -: permanent
environmental effect of dam, litter within dam, additive direct effect, additive
maternal effect and random error. The model assumed a non-zero additive
genetic covariance between direct and maternal additive genetic effects. '

Results for one, two, and for cattle example, three-trait analyses are
reported. Some characteristics of each example model are shown in Table 1.
For the sheep data the number of parameters to be estimated increases
dramatically as more traits are included in the analysis. This is because the
model includes four random effects and both direct and maternal additive genetic
effects so that the dimension of the additive genetic covariance matrix to be
estimated becomes twice the number of traits ‘included in the analysis.

Table 1. Characteristics of example models analyzed

Item ’ Cattle data " Sheep data

No. of traits 1 2 3 1 2
NZ! in MME? 72914 263942 564634 260729 976255
Rank of MME 15537 31074 46581 27705 55410
Parameters to estimate 2 . 6 12 6 19
Avcr';lgc NZ per equation 4.69 8.49 12.12 9.;11 17.62
Pct. filled cells 0.054 0.051 0.050 0.064 0.062
! Non-zeros |

2 Mixed model equations

For comparison some of the models were also analysed using a DF and
an Em algorithm. All the computations were performed using the DMU-package
of Jensen and Madsen [11]. The starting values for parameters 10 be estimated
were the same in all the analyses. Due to very long computing times for EM
the two trait analyses on sheep data were run using the DF and Al algorithms
only.

10. Results and Discussion

The algorithm presented here is an extension of basic ideas presented by
Johnson and Thompson [12] in order to analyse general multiple trait models.
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In contrast of DF and EM algorithms the Al algorithm usually converges in
very few rounds. This is clearly seen in Table 2 where the number of rounds,
computing time and the log-likelihood at convergence are presented for each

Téble 2. Number of rounds/evaluations, computing timé, and log-h]ieﬁhood (Lyat
convergence for DF, EM and Al algorithms run on example models

Model and measure Algoﬁthm
DF EM Al (EM)
Cattle, 1 txaitl )
Rounds . 4 77 40"
Time (s) 142 © 1237 : 84
2L 4.87005 '4.87012 . 4.87006
Cath, 2 traits
Rounds 351 1000 6 (0)
Time (s) 4704 108353 710
-2InL 89.78331 89.78341 89.78306
Cattle, 3 traits
Rounds 1435 1000* 6(0)
Time(s) 54896 319127 2068
-2InL 16.84969 15.15830 15.15638
Sheep, 1 trait
Rounds 4M 620 5(1)
Time(s) 1267 47596 418
—2InL 40.67845 40.67893 40.67846
Sheep, 2 traits
Rounds | ss13 — 6(1)
Time(s) 110222 — 3570
-2InL 94.51863 - 44.53450

:‘ Maximum number of iterations reached.
No of evaluations with weight on EM.
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example run. Although-each round of iteration in Al scheme can take: more
time than rounds for DF or EM, the amount of computer time needed is much
less for the Al algorithm than for the DF and EM. The superiority of Al
algorithm is obvious when the number of parameters to be estimated is large
as the number of iterations seems not to be affected by the number of dimensions
in the maximization. The same was seen before in Madsen ef al. [16] where
the same data as here was ana]yzedj considering simultaneously up to 5 traits.
The number of iterations remained constantly under 15, although the number
of parameters estimated was 30 (Madsen et al. [16]). Moreover, the AI algorithm
was generally able to locate a higher In L, than.the EM and DF algorithms.
In cases with many parameters to estimate, (3 traits in cattle data or 2 traits
with sheep model) the DF algorithm was not able to satisfactorily locate the
maximum of the likelihood function. This is most likely to be due to the poor
numerical properties of algorithms "based upon derivative free methods™ as
discussed by Misztal [21]. : ‘

A problem in comparing the number of rounds with different algorithms
is the stopping criteria used. In DF the Simplex algorithm of Nelder and
Mead [24] was used, and it was required that the variance of the log-likelihood
values in the polytope was less than 10f8. In EM and Al several alternatives
were tested. The norm of the update véctor Il A ll <, hasa disadvantage since
it can be very small in EM when the solutions are still far away from the

maximum. If the algorithm converges to a point inside the parameter space,
the vector of first derivatives (the gradients) should approach zero. An

oL (9) .
30 'Ilfez, where €, is

alternative stopping criteria would therefore be
a small positive number.

Usually the parameters in the likelihood are estimated with varying
precision. A parameter estimated with a low precision corresponds to a
dimension in the likelihood where the surface is relatively flat. Thus a third

: ' diag. (l'l) o
stopping criteria could therefore be N“ 9 la“ée) < g, where N

is the number of parameters to be estimated. The last stopping criteria has the
advantage that dimensions corresponding to parameters estimated with a low
accuracy will get more weight. The disadvantage of the third convergence
criteria is that if estimates are at the boundary of the parameter space the vector
of first derivatives is not necessarily zero. -In our implementation we have
therefore chosed to stop whenever criteria 1 or criteria 3 were fulfilled but
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with & << €,. In the examples here EM and Al algorithms had the same

convergence criterium. The main emphasis was on criteria 3, i.e., the norm
of weighted gradient, which was fulfilled in all AI runs (e, = 0.05). However,

in all cases but one EM failed to fulfill the criteria, and the maximum limit
of 1000. iterations were reached instead. Slow convergence near the maximum
seems to be a characteristic of EM algorithm in cases where the likelihood
is complicated and the information from the data is limited.

The update in (32) do not guarantee estimates within the parameter space,
and if estimates are inadmissible some action must be taken. One possibility
is to discard the AI update and replace it with an EMn update, since that ensures
that estimates stay ‘within parameter space and an EM update will always
increase the likelihood. However, our experience revealed that using .an update
from the combined information matrix in (41) was a better alternative. This
leaves the problem of choosing the relative weights on the two algorithms,
A practical approach that we useq was to set b, to a small number and then’

increase it until estimates from the combined algorithms are within parameter
space. Experience, where bg,, initially was set to 1/200 and increased by 1/200
until admissible parameters were obtained suggested that a vefy small weight
in EM in many practical cases is sufficient. Obviously our choice of bgy, was
very arbitrary and better ways of- choosing by, could be derived. In the dairy
cattle example the Al algorithm performed without problems but with the much

more complicated model for sheep data, AI steps pointing out of parameters
space were encountered during the first round of iteration, but admissible

 estimates were recovered with a single 1/200 step towards EM information

(Table 2).

The probability of getting: intermediate estimates outside parameter space
tends to increase with the number of parameters to be estimated. A poor choice
of starting values for the (co)variance parameters also can create problems in
the first rounds of iteration. In such cases our approach was to gradually mix
Al and EM information matrices. More efficient solutions to this problem might
exist. One possibility is to compute updates to a transformation of the parameters
in the likelihood function as was suggested by Lindstrom and Bates [15].
Updating, e.g. on a Cholesky decomposition of all the (co)variance matrices
will ensure that all estimates of the covariance matrices themselves will remain
within parameter space. :
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Meyer and Smith [20] investigated several alternative schemes for
'maxumzmg the restricted likelihood, including Newton-Raphson and Fisher
scoring. They used exact second differentials and considered a number of
techniques to ensure that the likelihood increases in each iteration. Also in their
study second derivative methods typically converged in much smaller number
of iterations than derivative free methods. They were using a method of
backward differentiation by Smith [29] that requires 6N times as much
_ computation as when evaluating only the likelihood. Our approach of average
information requires much less work in each iteration, typically less than
required for calculating the first derivative. The computation of exact second
-differentials also have large memory requirements. ‘-

It might be thought that using second differentials opposed to average
information should speed convergence. However, for these there are two
different possibilities, corresponding to observed and expected information, i.e.
Newton-Raphson or Fisher scoring, respectively. There are no consensus on
which is better in all circumstances. Jennrich and Sampson [8] and Jennrich
and Schlucter [9] suggest that Newton-Raphson is less robust against poor
starting values than Fisher scoring and they advocate switching between
algorithms. Meyer and Smith [20] failed to show any consistent advantages
of either of the two methods but found, however, mixed algorithm starting with
Fisher scoring and later on switching to Newton-Raphson to be more robust
than either of two alone. Gilmour e/ al. [4] saw in several situations that Al
and Newton-Raphson algorithms .converged with the same small .number of

iterations.
o

Meyer and Smith [20] considered also reparameterization of (co)variance
matrices into Cholesky scale. As was mentioned earlier we expect that their
suggestions could improve the robustness of the AI algorithm as well. The
transformations require only little extra computations once the first and second
differentials are available. However, the transformation may change the shape
of the likelihood so that the maximum is more. difficult to locate. Thus more
experience is needed before a gereral recommendation can be made. In its
simplicity the combined EM and Al algorithm may be of interest because by
suitable choice of béM it will always lead to a point in the parameter space

with increased likelihood. It could also be thought of as a Marquardt type
algorithm by making the adjustments in the canonical parameter space. '
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